Evaluation of Test-Time Adaptation Under Computational Time Constraints

Abstract

This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Although many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method’s adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments show that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020, outperforms the state-of-the-art method SAR from 2023 in this setting. Our results reveal the importance of developing practical TTA methods that are both accurate and efficient.

Publication
In International Conference on Machine Learning
Motasem Alfarra
Motasem Alfarra
Machine Learning Researcher at Qualcomm AI Research, Amsterdam, Netherlands

I am a machine learning researcher at Qualcomm AI Research in Amsterdam, Netherlands. I obtained my Ph.D. in Electrical and Computer Engineering from KAUST in Saudi Arabia advised by Prof. Bernard Ghanem. I also obtained my M.Sc degree in Electrical Engineering from KAUST, and my undergraduate degree in Electrical Engineering from Kuwait University. I am interested in domain shifts, LLM safety, and how to combat them with test-time adaptation and continual learning. I helped co-organizing the first workshop on Test-Time Adaptation at CVPR2024!