Test-Time Adaptation with Source Based Auxiliary Tasks

Abstract

This work tackles a key challenge in Test Time Adaptation~(TTA); adapting on limited data. This challenge arises naturally from two scenarios. (i) Current TTA methods are limited by the bandwidth with which the stream reveals data, since conducting several adaptation steps on each revealed batch from the stream will lead to overfitting. (ii) In many realistic scenarios, the stream reveals insufficient data for the model to fully adapt to a given distribution shift. We tackle the first scenario problem with auxiliary tasks where we leverage unlabeled data from the training distribution. In particular, we propose distilling the predictions of an originally pretrained model on clean data during adaptation. We found that our proposed auxiliary task significantly accelerates the adaptation to distribution shifts. We report a performance improvement over the state of the art by 1.5% and 6% on average across all corruptions on ImageNet-C under episodic and continual evaluation, respectively. To combat the second scenario of limited data, we analyze the effectiveness of combining federated adaptation with our proposed auxiliary task across different models even when different clients observe different distribution shifts. We find that not only federated averaging enhances adaptation, but combining it with our auxiliary task provides a notable 6% performance gains over previous TTA methods.

Publication
In Transactions on Machine Learning Research
Motasem Alfarra
Motasem Alfarra
Machine Learning Researcher at Qualcomm AI Research, Amsterdam, Netherlands

I am a machine learning researcher at Qualcomm AI Research in Amsterdam, Netherlands. I obtained my Ph.D. in Electrical and Computer Engineering from KAUST in Saudi Arabia advised by Prof. Bernard Ghanem. I also obtained my M.Sc degree in Electrical Engineering from KAUST, and my undergraduate degree in Electrical Engineering from Kuwait University. I am interested in domain shifts, LLM safety, and how to combat them with test-time adaptation and continual learning. I helped co-organizing the first workshop on Test-Time Adaptation at CVPR2024!